The limit at the origin of a smooth function space
نویسندگان
چکیده
The map H → H↓ assigns to each finite-dimensional space of smooth functions a homogeneous polynomial space of the same dimension. We discuss applications of this map in the areas of multivariate polynomial interpolation, box spline theory and polynomial ideals. §
منابع مشابه
On the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملSmooth biproximity spaces and P-smooth quasi-proximity spaces
The notion of smooth biproximity space where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008